Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships †

Daesung Chong, Irene P. Georgakaki, Rosario Mejia-Rodriguez, Jean Sanabria-Chinchilla, Manuel P. Soriaga and Marcetta Y. Darensbourg *

Texas A&M University, Department of Chemistry, College Station, Texas 77843, USA. E-mail: marcetta@mail.chem.tamu.edu; Fax: 979-845-0158; Tel: 979-845-5417

Received 17th April 2003, Accepted 30th May 2003

First published as an Advance Article on the web 22nd September 2003

www.rsc.org/dalton

A series of binuclear Fe^IFe^I complexes, $(\mu$ -SEt)₂[Fe(CO)₂L]₂ (L = CO (1), PMe₃ (1-P)), $(\mu$ -SRS)[Fe(CO)₂L]₂ (R = $CH_2CH_2(H_1(H_1 \cup 1; L = CO(2), PMe_3(2-P); R = CH_2CH_2CH_2(H_1 \cup 1; L = CO(3), PMe_3(3-P); and R = $o\text{-CH}_2C_6H_4CH_2$$ $(\mu$ -*o*-xyldt): $L = CO(4)$, PMe₃ (4-P)), that serve as structural models for the active site of Fe-hydrogenase are shown to be electrocatalysts for H**2** production in the presence of acetic acid in acetonitrile. The redox levels for H**²** production were established by spectroelectrochemistry to be Fe⁰Fe⁰ for the all-CO complexes and Fe^IFe⁰ for the PMe₃-substituted derivatives. As electrocatalysts, the PMe₃ derivatives are more stable and more sensitive to acid concentration than the all-CO complexes. The electrocatalysis is initiated by electrochemical reduction of these diiron complexes, which subsequently, under weak acid conditions, undergo protonation of the reduced iron center to produce H_2 . An $(\eta^2 - H_2)Fe^{II} - Fe^{0/I}$ intermediate is suggested and probable electrochemical mechanisms are discussed.

Introduction

Hydrogenase enzymes control dihydrogen metabolism in a wide variety of rudimentary microorganisms.**¹** These complex biomolecules have long intrigued chemists and engineers for the possibility that they might hold the key to a viable macroscale hydrogen economy.**2,3** Hydrogenases have evolved to perform both H**2** production and H**2** uptake reversibly in the simplest of reactions, 2 H⁺ + 2 e⁻ \rightleftharpoons H₂, which in the natural systems occur at neutral pH and in a redox range of -100 to -550 $mV^{1,2}$ The H₂-production process is of obvious importance to the ready accessibility of H_2 and is most typically carried out by iron-only hydrogenase, $[Fe]H_2$ ase; the good H₂-uptake by nickel–iron hydrogenase, [NiFe]H₂ase, has implications for fuel cell development.**4,5** The confluence of recent progress in the fundamental sciences of molecular biology, genetics, and protein crystallography with the need for alternatives to fossil fuels provides renewed stimulus for research in this area.**²**

The iron-only hydrogenase, [Fe]H₂ase, is remarkable in its efficiency for H₂ production⁶ as well as in the formulation/ construction of its active site.⁷⁻⁹ As in the [NiFe]H₂ase,¹⁰ [Fe]H**2**ase is outfitted with a series of iron–sulfur clusters that "wire" the active site to the electron donor/acceptor protein docked into the periphery of the redox-active enzyme. For [Fe]H**2**ase, X-ray crystallography, with support from vibrational spectroscopy, has established the presence of diatomic ligands, CO and CN-, in a binuclear active site which is shown in Fig. 1.**7–9** Compositional/structural models which serve as

Fig. 1 Representation of [Fe]hydrogenase active site in the reduced form and its role in $H⁺/e⁻$ uptake.

† Based on the presentation given at Dalton Discussion No. 6, 9–11th September 2003, University of York, UK.

Electronic supplementary information (ESI) available: Cyclic voltammograms for **1** to the anodic direction, and for **4-P** with acetic acid. *In situ* IR spectra during bulk electrolysis for **2** with acetic acid and reduction and re-oxidation process for **1** in the absence of acid. See http://www.rsc.org/suppdata/dt/b3/b304283a/

spectroscopic reference points for the active site can be readily accessed from $(\mu-S_2)Fe_2(CO)_6$.¹¹ Derivatives in the form of $(\mu-E)(\mu-pdt)[Fe^{II}(CO)_2PMe_3]_2^+$ (E = H, SMe; pdt = SCH₂CH₂-CH**2**S) have demonstrated ability to promote the same isotopic scrambling reaction^{12–14} as used in activity assays for the enzyme, eqn. (1).

$$
H_2 + D_2O \rightleftharpoons HD + HOD \tag{1}
$$

Key to this functional biomimicry is the requirement of light which generates an open site necessary for η^2 -H₂ binding to d⁶ Fe^{II} complexes.¹⁵ Thus the binuclear $(\eta^2 - H_2)Fe^{II}Fe^{II}$ intermediate in these H_2 ase-like activity studies mimics the $(\eta^2 - H_2)Fe^{II}$ interaction of the distal iron of the oxidized form of the enzyme proposed to be in a mixed-valent Fe**II**Fe**^I** redox level.**16–18**

As illustrated in Fig. 1, the enzyme active site in the reduced form has an available coordination position on the distal iron**⁸** (the iron in the dinuclear complex furthest removed from the iron–sulfur cluster that shuttles electrons into or out of the active site) that may be occupied by H_2 or H^- , dependent on the direction of reactivity. The spectroscopically-supported oxidation state assignment of this diamagnetic, reduced form of the enzyme is Fe^IFe^I.^{16,18} However, the asymmetric Fe–Fe bond electron density distribution makes the distal iron even lower valent, depicted in Fig. 1 in the extreme oxidation state of Fe**⁰** . This apparent open site in the reduced form of the enzyme is occupied by a labile H**2**O molecule in the oxidized, mixed-valent $Fe^{II}Fe^{I}$ redox level^{16–18} that is responsible for H_2 binding and activation.

Thus the production of H**2** is presumed to occur *via* protonation of an Fe^{II}–H⁻, itself deriving from a precursor Fe⁰ species *via* protonation, eqn. (2).

$$
[Fe^{0}-Fe^{I}] + H^{+} \rightarrow [H-Fe^{II}-Fe^{I}] + H^{+} \rightarrow [(\eta^{2}-H_{2})Fe^{II}-Fe^{I}]
$$
 (2)

In order to provide precedent for such proposed H₂-production activity, a series of $(\mu$ -SRS)[Fe^I(CO)₂L]₂ complexes were used to explore the potential of these structural models for H₂ production. A detailed electrochemical study of the Fe**^I** Fe**^I** dithiolate models and the electrocatalytic H_2 production at the Fe⁰Fe^I and Fe⁰Fe⁰ redox level in the presence of a weak acid is discussed in this paper.

Experimental

Materials

Starting materials, $(\mu$ -SEt)₂[Fe(CO)₂L]₂ (L = CO (1), PMe₃ $(1-P)$), $(\mu$ -edt)[Fe(CO)₂L]₂ (L = CO (2), PMe₃ (2-P)), (μ -pdt)- $[Fe(CO), L]$ ₂ (L = CO (3), PMe₃ (3-P)) and (μ - o -xyldt)- $[Fe(CO)₂L]$ ₂ (L = CO (4), PMe₃ (4-P)) were prepared by the literature methods.**13,19,20** Acetonitrile was distilled once from $CaH₂$ and once from $P₂O₅$, and then freshly distilled from $CaH₂$ immediately before use. The all-CO complexes were air-stable while the PMe₃ derivatives were stored, weighed and transferred in an Ar-filled glove box.

Electrochemistry

Electrochemical measurements were made using a BAS 100A potentiostat. All voltammograms were obtained in a conventional and a gas-tight three-electrode cell under Ar, N_2 , or CO atmosphere. The working electrode was a glassy carbon disk (0.071 cm^{-1}) polished with 1 µm diamond paste and sonicated in H**2**O for 15 min. All potentials were measured in 0.1 M n -Bu₄NBF₄ solution in CH₃CN and they are reported relative to the normal hydrogen electrode (NHE). Bulk electrolyses for electrocatalytic reaction were done using an EG&G Model 273 potentiostat and Galvanostat. Electrocatalytic experiments were carried out under argon or nitrogen atmosphere for 1 h on a vitreous carbon rod $(A = 3.34 \text{ cm}^2)$ in a gastight H-type electrolysis cell containing *ca*. 10 mL CH₃CN which was 2.5 mM in the diiron complexes and 0.1 M in n -Bu₄NBF₄.

Spectroscopy

Infrared spectroscopic monitoring experiments during the course of bulk electrolysis were performed by use of a ReactIR**TM** 1000 equipped with an MCT detector and 30 bounce SiCOMP *in situ* probe and purchased from Applied Systems Inc. The *in situ* IR probe was immersed in a selfdesigned, 50 mL, electrolysis cell as shown in Fig. 2-(I). The EPR spectrum was recorded on a Bruker X-band EPR spectrometer (model ESP 300E) with Oxford Liquid Helium/ Nitrogen cryostat at 10 K, 1 mW power and 0.1 mT modulated amplitude.

Fig. 2 (I) The *in situ* IR/electrochemical cell: (a) reference electrode $(Ag/Ag⁺)$, (b) *in situ* IR probe (ReactIRTM), (c) working electrode (carbon rod) and (d) counter electrode (Pt); and (II) sample stacked plot IR spectra for the reduction process at -1.34 V of complex 1 (7.5 mM).

Results and discussion

Electrochemistry/cyclic voltammograms

The series of diiron dithiolates used in this study is given in Table 1 along with infrared data in the CO stretching region. All complexes in the series have been structurally characterized by single crystal X-ray crystallography,**12,13,21** and representatives of those structures are displayed as stick drawings in Fig. 3. A combination of steric and electronic effects accounts for the specific geometries observed in the PMe₃ substituted derivatives.**¹³** While the three-band ν(CO) pattern in the IR is similar for each of the all-CO species, differences arise for the phosphine-substituted series which depend on the positions of the PMe**3** ligands.**¹³** Reflecting the electron-donating ability of the phosphines (which is similar to cyanides), the average $v(CO)$ value is *ca*. 100 cm⁻¹ lower in the PMe₃-substituted complexes as compared to the all-CO complexes. The $v(CO)$ infrared spectral values within the all-CO and the PMe₃-substituted subsets show no significant differences for the μ -SRS derivatives, however the µ-SEt complexes appear to have slightly lower ν(CO) values in each subset, Table 1.

Fig. 3 Cyclic voltammograms of a series of complexes **1**, **3**, **4** and **1-P** in CO-saturated CH**3**CN solution (0.1 M *n*-Bu**4**NBF**4**) with electrochemical parameters as described in Table 1.

The cyclic voltammograms shown in Fig. 3 were recorded in CO-saturated CH**3**CN solution which gave better defined waves; they were initiated from the rest potentials and proceed as indicated in the cathodic direction. The all-CO species display two reduction events that are typical of all members of the series. A quasi-reversible or electrochemically irreversible reduction (E_1) is observed for the all-CO species in the range of -1.16 to -1.34 V, in agreement with the values obtained by Pickett and co-workers,²² and an irreversible event (E_2) is in the range of -1.81 to -1.95 V. The assignment of the first event to a one-electron reduction process $Fe^{I}Fe^{I} + e^{-} \rightarrow Fe^{I}Fe^{0}$ is supported by bulk electrolysis and IR data described below. The second reduction event is proposed to correspond to the

Table 1 Listing of $v(CO)$ infrared and electrochemical parameters^a for $(\mu$ -SRS)[Fe(CO)₂L]₂ and $(\mu$ -SR₂][Fe(CO₂L]₂ complexes in CH₃CN

$L = CO$	$v({\rm CO})$ /cm ⁻¹	E_{nc} vs. NHE/V E_i : Fe ^I Fe ^I \longrightarrow Fe ⁰ Fe ^I $(E_2: \text{Fe}^0\text{Fe}^1 \longrightarrow \text{Fe}^0\text{Fe}^0)$	E_{na} vs. NHE/V $FeIFeI \longrightarrow FeIIFeI$
$(\mu$ -SEt), 1	2073 (m), 2034 (vs), 1992 (s)	$-1.31(-1.94)$	1.18
$(\mu$ -edt), 2	2087 (m), 2038 (vs), 1997 (s)	$-1.30(-1.84)$	1.29
$(\mu$ -pdt), 3	2074 (m), 2036 (vs), 1995 (s)	$-1.34(-1.95)$	1.14
$(\mu$ - <i>o</i> -xyldt), 4	2076 (m), 2040 (vs), 1999 (s)	$-1.16(-1.81)$	1.20
$L = PMe3$			
$(\mu$ -SEt), 1-P	1977 (s), 1931 (m), 1908 (s)	-1.91	0.27
$(\mu$ -edt), 2- P	1982 (s), 1944 (s), 1908 (s), 1896 (m,br)	-1.87	0.34
$(\mu$ -pdt), $3-P$	1979 (m), 1942 (s), 1898 (s)	-1.85	0.34
$(\mu$ - <i>o</i> -xyldt), 4-P	1983 (m), 1948 (s), 1903 (s)	-1.80	0.35

^{*a*} CH₃CN solution (0.1 M *n*-Bu₄NBF₄) with a glassy carbon working electrode (*A* = 0.071 cm²) to NHE using Cp₂Fe/Cp₂Fe⁺ standard (*E*_{1/2} = 0.40 V). Counter electrode: Pt. Scan rate: 0.2 V s⁻¹. SRS: µ-edt = SCH₂CH₂S, µ-pdt = SCH₂CH₂CH₂S, µ-*o*-xyldt = SCH₂-C₆H₄-CH₂S.

Fig. 4 *In situ* IR spectra during bulk electrolysis for 1 (7.5 mM). (a) neutral starting complex, (b) following reduction ($E_{app} = -1.34$ V), (a') re-oxidation $(E_{app} = -0.95 \text{ V})$ in 0.1 M *n*-Bu₄NBF₄ solution in CH₃CN and (c) EPR spectrum of a sample from (b).

 $Fe^{I}Fe^{0} + e^{-} \rightarrow Fe^{0}Fe^{0}$ process. The PMe₃-derivatives 1-P through $4-P$ show one reduction event at *ca*. -1.9 V that is assigned to the one-electron reduction of Fe^IFe^I to Fe^IFe⁰. Its appearance at more negative potentials than that corresponding to the all-CO complexes is consistent with the better donor character of the PMe₃ ligand relative to CO. At room temperature, controlled-potential coulometry of all complexes at each cathodic peak potential in the absence of added acid shows net consumption of about 0.95 electron per molecule.

The first reduction for complexes **3** and **4** show greater reversibility than complex 1. The second reduction, E_2 , is however better defined in **1**. The peak current of these redox couples is proportional to the square root of the scan rate (50–1000 mV s⁻¹), which indicates that the electrochemical processes are diffusion-controlled.**²³**

Notable in the cyclic voltammograms for compounds **1**, **3** and **4** in Fig. 3 is a small irreversible event at *ca*. 0.0 V which appears only after cycling through the nearest reduction wave. It is assumed to result from a reduction-derived decomposition product (see ESI †). As the electrochemistry is performed under CO, the mononuclear [(EtS)Fe(CO)**4**] - which has an irreversible oxidation wave about 0.07 V is a likely decomposition product.**²⁴**

Also observed for each member of the series is an irreversible anodic or oxidative event which is displaced positively by *ca.* 2.2–2.6 V from the E_1 cathodic feature for all species, Fig. 3. As expected, the PMe₃ derivatives destabilize the Fe^IFe⁰ form and stabilize the Fe^IFe^{II} as compared to the all-CO parent species.

Minor differences in positions of either the cathodic or anodic events within the series are not readily correlated with the μ -SRS or μ -SR bridges; as mentioned above, the $\nu(CO)$ infrared spectral values are similar within a subset.

Spectroelectrochemistry

The E_1 process $\text{Fe}^{\text{I}}\text{Fe}^{\text{I}} \rightarrow \text{Fe}^{\text{I}}\text{Fe}^{\text{0}}$ for complexes 1, 3 and 4 is supported by spectroelectrochemical monitors using a ReactIR[™] for *in situ* infrared monitoring of solutions during the course of bulk electrolysis (Figs. 2-II, 4 and ESI†). For example, electrolysis of a CO-saturated²⁵ CH₂CN solution of 1 at an applied potential of -1.34 V over the course of 4 h resulted in a loss of intensity of the three ν(CO) IR bands of the neutral complex (2073, 2034 and 1992 cm^{-1} , Fig. 4(a)) with growth of bands at 1999, 1949 and 1922 cm^{-1} , Fig. 4(b). On anodic electrolysis at -0.95 V the original IR spectrum was regenerated along with a minor amount of a species with infrared bands at 2115 and 1953 cm^{-1} (Fig. 4(a')). While the structure of the one-electron reduced species is not known, that it is an anion of similar structure to that of the neutral starting material is a reasonable conclusion based on the IR spectral changes. Furthermore, the EPR spectrum (Fig. 4(c)) of a sample withdrawn from this solution displays an axial EPR signal (g_{\perp} = 2.117 and g_{\parallel} = 1.994) indicative of an odd-electron species (Fe^IFe⁰), and consistent with the one-electron occupancy of the Fe–Fe antibonding LUMO.**22,26** On addition of acid to the reduced species the EPR signal disappears and the

Fig. 5 Cyclic voltammograms of (a) complex $1(2.5 \text{ mM})$ with HOAc (0–100 mM) and (b) **1-P** (2.5 mM) with HOAc (0–100 mM) in 0.1 M *n*-Bu₄NBF₄ in CH₃CN and with electrochemical parameters as described in Table 1. (I): Fe^IFe^I/Fe⁰Fe^I, ca. -1.31 V; (II): Fe⁰Fe^I/Fe⁰Fe⁰, ca. -1.94 V; (III): Fe**^I** Fe**^I** /Fe**⁰** Fe**^I** , *ca.* -1.91 V.

starting complex is reclaimed. The reversible chemical behavior is incongruent with the observed irreversible electrochemical response of complex 1 at the $\text{Fe}^{\text{I}}\text{Fe}^{\text{I}} \rightarrow \text{Fe}^{\text{I}}\text{Fe}^{\text{0}}$ reduction event. At this time we have no explanation for this result.

Electrocatalysis of H₂ production

Controlled-potential electrolyses were performed in an H-type cell with a rod type glassy carbon electrode $(A = 3.34 \text{ cm}^2)$. Under the same conditions, acetic acid in CH₃CN (pK_a = 22.6)²⁷ is reduced at a potential of -2.2 V. For the all-CO complexes, **1–4**, the current height of the first redox wave $(E_1 =$ -1.2 ± 0.1 V, Fig. 5(a)-(I)) shows a slight increase with added increments of acid while the second redox wave $(E_2 = -1.9 \pm 1.0)$ 0.05 V, Fig. 5(a)-(II)) shows a significant electrocatalytic response. The current height of the single cathodic event at *ca.* -1.85 ± 0.05 V of the PMe₃-derivatives increases linearly with the concentration of acetic acid, Fig. 5(b) and 6. The steeper slope displayed by the PMe₃-derivative, 1-P, Fig. 6, is indicative of its greater sensitivity to acid concentration compared to the all-CO complex **1**. This is consistent with a more stable reaction intermediate of the PMe₃ complex, presumably $H - Fe^{II}$. The electrolysis of complexes 1, 1-P and 4-P at -1.96 V, -1.93 V and -1.85 V, respectively, in the presence of acetic acid (100 mM) for 1 h consumes 12 (*ca.* 6 turnovers h⁻¹), 34 (*ca.* 17) turnovers h^{-1}) and 60 (*ca*.30 turnovers h^{-1}) electrons per molecule, respectively. These observations are typical of electrocatalytic reactions.**23,28–33**

The gas which evolved during electrolysis was directed into an NMR tube, purging the CD**2**Cl**2** solvent for 20 min. The **¹** H

Fig. 6 Dependence of current heights of electrocatalytic waves on acid concentration. (a) $1-P$ (-1.91 V), (b) 1 (-1.94 V) and (c) 1 (-1.31 V).

NMR spectrum of this sample showed one resonance at 4.61 ppm for dissolved H_2 ^{12–14} A reasonable conclusion is that electrochemical reduction of the diiron complexes initiates the electrocatalysis, followed by protonation of the reduced iron center to produce H₂.

In the absence of acid, the cyclic voltammograms of the Fe**^I** - Fe**^I** complexes **1**–**4** and **1-P**– **4-P** measured in CO-saturated or N_2 -saturated CH₃CN solution are fairly similar. In the presence of acid under N_2 an electrochemical response at -1.45 V appeared. The new event was not present in CO-saturated CH**3**CN (Fig. 7). This observation is interpreted to signify that the oxidative addition of a proton to the reduced Fe**⁰** Fe**^I** , to form H–Fe^{II}–Fe^I, prompts CO mobility and replacement by CH**3**CN**³⁴** giving rise to an additional and more negative electrochemical response.

Fig. 7 Cyclic voltammograms of complex **1** (2.5 mM); (a) without acetic acid under N_2 , (b) with acetic acid (50 mM) under CO and (c) with acetic acid (50 mM) under N₂.

Mechanisms

Our results point to two reductive routes to electrocatalysis of H**2** production from binuclear Fe**^I** Fe**^I** complexes in the presence of weak acid, HOAc, as a proton source. For the all-CO complexes, the electrocatalysis occurs at the second reduction potential (E_2) that corresponds to an Fe^0Fe^0 species. The Fe^{II} – hydride that results from oxidative addition of a proton to Fe**⁰** is set up to accept another proton, generating an $(\eta^2 - H_2)Fe^{II} - Fe^{0}$ complex according to Scheme 1. An EECC (electrochemical– electrochemical–chemical–chemical) mechanism accounts for this process.

With the PMe_3 substituents in the $Fe^{I}Fe^{I}$ complexes the Fe⁰Fe⁰ state is not accessible within the solvent window, however the electrocatalysis occurs at the Fe⁰Fe^I oxidation level that is analogous to that expected for the [Fe]H₂ase enzyme active site.^{17,18} Thus the $(\eta^2 - H_2)Fe^{II} - Fe^{I}$ intermediate is a key species in

Scheme 1 Proposed EECC electrocatalysis mechanism for H₂ production of the all-CO complexes with H^+ invoking the second reduction potential.

several electrochemical pathways, deriving from Fe^I complexes as starting points. The ECCE (electrochemical–chemical–chemical–electrochemical) process as shown in Scheme 2(a) applies to the Fe^I–Fe^I model complexes, $(\mu$ -SRS)[Fe(CO)₂L]₂ (L = CO $(ca. -1.2$ to -1.3 V) and PMe₃ (-1.8 to -1.9 V)), with HOAc in CH**3**CN. An alternative EC (electrochemical–chemical) route expressed in Scheme 2(b) can be proposed based on the bimolecular reaction of two Fe**II**–hydride (H–Fe**II**–Fe**^I**) species derived from oxidative addition of two protons to two separate Fe⁰Fe^I species. Such an EC mechanism was previously proposed to account for the electrocatalysis of H**2** production by the mononuclear complex, $(\eta^5$ -C₅H₅)Co(PR₃)₂.³¹ Whether the formation of a tetranuclear cluster intermediate from two [H–Fe**II**Fe**^I**] species is reasonable is not clear; it is poorly favored by steric factors.

Scheme 2 Possible electrocatalysis mechanisms for H_2 production from $Fe^{I}Fe^{I}$, (μ -SRS)[Fe(CO)₂(PMe₃)]₂ complexes and H⁺: (a) ECCE and (b) EC.

Concluding remarks

Our studies have focused on a low-valent/weak acid route to H**²** production *via* electrocatalysis by dinuclear iron compounds, $(\mu$ -SRS)[Fe^I(CO)₂L]₂ (L = CO, PMe₃). In related studies, a neutral and an anionic mixed ligand complexes, (µ-pdt)[Fe(CO)**2**- $(PMe_3)][Fe(CO)_2(L')]^z$ (L' = PMe₃, $z = 0$; L' = CN⁻, $z = -1$) were reported by Rauchfuss and co-workers **28,29** to serve as electrocatalysts for H**2** production in the presence of strong acids, HOTs (toluenesulfonic acid), H**2**SO**4** and HCl. The proposed catalytic mechanism in both cases is initiated by protonation of the Fe–Fe bond, followed by reduction of the resulting $Fe^{II}(\mu-H)Fe^{II}$ species to produce a $Fe^{I}(\mu-H)Fe^{II}$ intermediate and finally release H_2 ^{28,29} As the Rauchfuss system

accesses the electrocatalysis with strong acids, it is reasonable that the electrochemical cycle has an alternate starting point.

With the weak CH₃COOH acid proton source as in our studies, even the bis-phosphine derivatives of the neutral complexes do not take up a proton in binuclear oxidative addition. Reduction at substantially negative potentials is required whereupon protonation immediately results in H₂ evolution; the well-known stable bridging hydride complex was never observed. This suggests single site oxidative addition of a proton to Fe^0 to give Fe^{II} –H, and after the second H^+ addition, $(\eta^2 - H_2)$ –Fe^{II}. The redox level at which the electrocatalysis takes place (Fe⁰Fe⁰ or Fe⁰Fe^I) depends on the donor ability of the ligands. In the case of the PMe₃ derivatives, electrocatalytic H_2 production is observed from the Fe⁰Fe^I redox state while the all-CO complexes show better electrocatalytic activity at the Fe⁰Fe⁰ than at the Fe⁰Fe^I redox level. The better electrocatalytic activity of the PMe₃-derivatives at the Fe^IFe⁰ level relative to the all-CO complexes is explained by the role of the good donor ligands in stabilizing the resulting H–Fe**II** intermediate that is formed after the oxidative addition of a H^+ to $Fe⁰$. It also provides a rationale for the necessity of the CN^- ligands at the active site of $[Fe]H_2$ ase in terms of access to reversibility in H_2 uptake/production.

While the H₂ production activities of [Fe]H₂ase model complexes are much lower than that of the enzyme, they have offered opportunity to explore electrocatalysis mechanisms (ECCE, EC and EECC) and useful information for understanding the reactivity of each redox level (Fe^IFe^I, Fe⁰Fe^I and Fe⁰Fe⁰) of hydrogenase model complexes for H^+ reduction. Interestingly, the recognition that binuclear complexes might be suitable functional models of hydrogenases has been an aspect of H**2**-production electrocatalyst design long before the structures of [NiFe]- and [Fe]-H**2**ase were established.**³³** Even with the blueprint for H₂ase active site construction given by protein crystal structures, the critical features that allow the mild redox potentials of the biological catalyst have not been achieved in a synthetic system. In our study described above, $a + 300$ mV gain in the reduction potential of acetic acid in non-aqueous solvent was achieved. Nevertheless the diiron complexes studied here have many points of modification, including the attachment of water-solubilizing pendant groups, studies of which are underway.

The simplicity of the [Fe]H₂ase active site as compared to that of [NiFe]H₂ase has, through model complexes, led to a better understanding of mechanisms of the redox levels that control H**2** production and H**2** uptake in the former.**³⁵** It should be mentioned that although an iron–diatomic ligand moiety, $(\mu$ -SR)₂Fe(CN)₂(CO), exists in the [NiFe]H₂ase active site, H₂ uptake is presumed to occur at nickel. Indeed, electrocatalytic H**2** generation has been observed with nickel-based biomimetic complexes as electrocatalyst.**36,37**

Acknowledgements

We acknowledge financial support from the National Science Foundation (Grants CHE-01-11629 to M. Y. D. for this work and CHE-0092010 for the EPR instrument) and contributions from the R. A. Welch Foundation to M. P. S. and M. Y. D. We thank our group members Dr Xuan Zhao and Chao-Yi Chiang for providing some of the compounds studied. R. M. R. gratefully acknowledges the Universidad Autonoma de Queretaro and PROMEP for their support. We thank Prof. W. Shin (Sogang University) for helpful discussions and an anonymous reviewer for suggestions.

References

1 P. M. Vignais, B. Billoud and J. Meyer, *FEMS Microbiol. Rev.*, 2001, **25**, 455–501.

- 2 R. Cammack, M. Frey and R. Robson, *Hydrogen as a Fuel: Learning from Nature*, Taylor & Francis, London and New York, 2001 and references therein.
- 3 M. W. W. Adams and E. I. Stiefel, *Science*, 1998, **282**, 1842–1843.
- 4 A. K. Jones, E. Sillery, S. P. J. Albracht and F. A. Armstrong, *Chem. Commun.*, 2002, 866–867.
- 5 S. V. Morozov, P. M. Vignais, L. Cournac, N. A. Zorin, E. E. Karyakina, A. A. Karyakin and S. Cosnier, *Int. J. Hydrogen Energy*, 2002, **27**, 1501–1505.
- 6 R. Cammack, *Nature*, 1999, **397**, 214–215.
- 7 J. W. Peters, W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt, *Science*, 1998, **282**, 1853–1858.
- 8 Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian and J. C. Fontecilla-Camps, *Structure*, 1999, **7**, 13–23.
- 9 Y. Nicolet, A. L. De Lacey, X. Vernéde, V. M. Fernandez, E. C. Hatchikian and J. C. Fontecilla-Camps, *J. Am. Chem. Soc.*, 2001, **123**, 1596–1601.
- 10 A. Volbeda, M.-H. Charon, C. Piras, C. E. Hatchikian, M. Frey and J. C. Fontecilla-Camps, *Nature*, 1995, **373**, 580–586.
- 11 D. Seyferth, G. B. Womack, M. K. Gallagher, M. Cowie, B. Hames, J. P. Fackler, Jr. and A. M. Mazany, *Organometallics*, 1987, **6**, 283– 294.
- 12 X. Zhao, I. P. Georgakaki, M. L. Miller, J. C. Yarbrough and M. Y. Darensbourg, *J. Am. Chem. Soc.*, 2001, **123**, 9710–9711.
- 13 X. Zhao, I. P. Georgakaki, M. L. Miller, R. Mejia-Rodriguez, C.-Y. Chiang and M. Y. Darensbourg, *Inorg. Chem.*, 2002, **41**, 3917– 3928.
- 14 I. P. Georgakaki, M. L. Miller and M. Y. Darensbourg, *Inorg. Chem.*, 2003, **42**, 2489–2494.
- 15 G. J. Kubas, *Metal Dihydrogen and* σ*-Bond Complexes; Structure, Theory, and Reactivity*, Kluwer Academic/Plenum Press, New York, 2001.
- 16 C. V. Popescu and E. Münck, *J. Am. Chem. Soc.*, 1999, **121**, 7877– 7884.
- 17 B. Bennet, B. J. Lemon and J. W. Peters, *Biochemistry*, 2000, **39**, 7455–7460.
- 18 A. L. De Lacey, C. Stadler, C. Cavazza, E. C. Hatchikian and V. M. Fernandez, *J. Am. Chem. Soc.*, 2000, **122**, 11232–11233.
- 19 E. J. Lyon, I. P. Georgakaki, J. H. Reibenspies and M. Y. Darensbourg, *J. Am. Chem. Soc.*, 2001, **123**, 3268–3278.
- 20 S. F. A. Kettle and L. E. Orgel, *J. Chem. Soc.*, 1960, 3890– 3895.
- 21 L. F. Dahl and C-H. Wei, *Inorg. Chem.*, 1963, **2**, 328–333.
- 21 L. L. Dum and S. L. Hos, margin Chemin, Franch, J. E. Barclay, D. J. Evans, 22 M. Razavet, S. C. Davies, D. L. Hughes, J. E. Barclay, D. J. Evans, S. A. Fairhurst, X. Liu and C. J. Pickett, *Dalton Trans.*, 2003, 586– 595.
- 23 A. J. Bard, *Electrochemical Methods: Fundamentals and Applications*, Wiley, New York, 2001.
- 24 W-F. Liaw, C. Kim, M. Y. Darensbourg and A. L. Rheingold, *J. Am. Chem. Soc.*, 1989, **111**, 3591–3597.
- 25 CO solutions were quantitated by the infrared band of free CO at 2128 cm-1 by using CO-saturated CH**3**CN as a standard.
- 26 E. J. Lyon, Ph. D. Dissertation, December 2000, Texas A&M University.
- 27 K. Izutsu, *Acid–Base Dissociation Constants in Dipolar Aprotic Solvents*; Blackwell Scientific Publications, Oxford, 1990, vol. 35.
- 28 F. Gloaguen, J. D. Lawrence and T. B. Rauchfuss, *J. Am. Chem. Soc.*, 2001, **123**, 9476–9477.
- 29 F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, M. Bénard and M-M. Rohmer, *Inorg. Chem.*, 2002, **41**, 6573–6582.
- 30 D. Astruc, *Electron Transfer and Radical Process in Transition-Metal Chemistry*, VCH, New York, 1995.
- 31 U. Koelle and S. Ohst, *Inorg. Chem.*, 1986, **25**, 2689–2694.
- 32 I. Bhugun, D. Lexa and J.-M. Savéant, *J. Am. Chem. Soc.*, 1996, **118**, 3982–3983.
- 33 J. P. Collman, Y. Ha, P. S. Wagenknecht, M.-A. Lopez and R. Guilard, *J. Am. Chem. Soc.*, 1993, **115**, 9080–9088.
- 34 X. Zhao, C.-Y. Chiang, M. L. Miller, M. V. Rampersad and M. Y. Darensbourg, *J. Am. Chem. Soc.*, 2003, **125**, 518–524.
- 35 M. Y. Darensbourg, E. J. Lyon, X. Zhao and I. P. Georgakaki, *Proc. Natl. Acad. Sci.*, 2003, **100**, 3683–3688.
- 36 L. L. Efros, H. H. Thorp, G. W. Brudvig and R. H. Crabtree, *Inorg. Chem.*, 1992, **31**, 1722–1724.
- 37 G. Musie, J. H. Reibenspies and M. Y. Darensbourg, *Inorg. Chem.*, 1998, **37**, 302–310.